Acid Mediated Disorders

Current Topics
May 2005

Ricardo A. Caicedo, MD
Pediatric Gastroenterology, University of Florida
Topics for Discussion

<table>
<thead>
<tr>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Diagnosis</td>
<td>• Infant physiologic GER</td>
</tr>
<tr>
<td>• Medical management</td>
<td>• Preterm neonatal GER</td>
</tr>
<tr>
<td>– Prokinetics</td>
<td>• Apnea</td>
</tr>
<tr>
<td>• Surgical management</td>
<td>• ALTE</td>
</tr>
<tr>
<td>• Esophagitis</td>
<td>• Otitis media and sinusitis</td>
</tr>
<tr>
<td>– Eosinophilic</td>
<td>• Cisapride and tegaserod</td>
</tr>
<tr>
<td>– Barrett’s</td>
<td>• Endoscopic therapy</td>
</tr>
<tr>
<td>• Asthma</td>
<td></td>
</tr>
<tr>
<td>• Helicobacter pylori</td>
<td></td>
</tr>
</tbody>
</table>
Causative Factors

TABLE 1. Pathophysiologic determinants of GERD

- **Refluxate toxicity**
 - Gastric acid secretion
 - Duodenogastric reflux

- **Intrinsic gastric volume and pressure**
 - Gastric compliance
 - Gastric emptying (20)
 - Gastric acid volume secretion

- **Extrinsic pressure on gastric contents**
 - Weight (obesity (22))
 - Somatic motor tone (spasticity (34))
 - Somatic and crural episodic contractions (cough, wheeze, ... (35,36))

- **Gastroesophageal barrier**
 - Lower esophageal sphincter tone
 - Gastric fundic sensory thresholds
 - (for Transient Lower Esophageal Sphincter Relaxations)
 - Cural diaphragm location (relative to sphincter location) and function

- **Esophageal defenses**
 - Salivary secretion
 - Peristaltic motor function
 - Esophageal cytoprotection

Genetics of GERD

- Familial clustering
 - GERD
 - Hiatal hernia
 - Barrett’s esophagus and adenocarcinoma

- “Severe pediatric GERD” locus: chromosome 13q14
 - Conflicting studies linking locus to phenotype
 - Specific gene defect suspected but excluded

- Multifactorial pathogenesis
 - Implies genetic heterogeneity in pediatric GERD

GER Disease

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>SIGNS/FINDINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recurrent vomiting</td>
<td>Esophagitis</td>
</tr>
<tr>
<td>Poor weight gain</td>
<td>Stricture</td>
</tr>
<tr>
<td>Irritability</td>
<td>Laryngitis</td>
</tr>
<tr>
<td>Heartburn/epigastric pain</td>
<td>Recurrent pneumonia</td>
</tr>
<tr>
<td>Hematemesis</td>
<td>Sandifer posturing</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>Anemia</td>
</tr>
<tr>
<td>Feeding refusal</td>
<td>Dental erosions</td>
</tr>
<tr>
<td>Globus sensation</td>
<td></td>
</tr>
<tr>
<td>Chronic cough/wheeze</td>
<td></td>
</tr>
<tr>
<td>Hoarseness</td>
<td></td>
</tr>
</tbody>
</table>
Diagnostic Approach

- H & P
- Empiric acid suppression therapy
 - Time-limited trial is cost-effective
 - Long term therapy requires accurate diagnosis
- UGI: anatomic abnormalities
- EGD/Bx
 - Assess for esophagitis presence and severity
 - Exclude infx, Crohn’s, EE
- pH monitoring
 - Temporal assn. between acid reflux and frequent sx
 - Adequacy of acid suppression therapy
 - Diurnal variation
 - Provocative feeds or regular diet?
 - What about non-acid reflux?

Evidence from ≥1 well designed case-control or cohort study
Non-acid reflux

• 1/3 of all GER events
• Predominantly in 1st hr after meal
• Impedance monitoring
 – Detects resistance to current flow
 – EM catheter with electrodes
 – Combination with pH probe
 • picks up both acid and non-acid GER
 • May be useful in cases of GERD not responsive to PPI or in extraesophageal reflux disease
 • Proposed therapies: Baclofen, EndoCinch (studies in adults)

DIAGNOSIS

- EGD/bx useful to exclude other disorders
- Perform esoph. bx even if mucosa appears grossly nl
- EGD useful in child over 2 y/o with recurrent vomiting

TREATMENT

- Elevation of HOB and left side positioning helpful
 - Children over 1 year old
- H2-blockers relieve sx and heal mucosa, but PPIs are superior to them for both
- Initial tx of esophagitis = lifestyle changes + PPI
- Histologic esophagitis: follow degree of sx relief
- Erosive esophagitis: follow endoscopically

Rudolph CD et al. (2001) JPGN 32, suppl. 2.
Esophagitis

FIG. 4. An algorithm for the continued management of a child or adolescent with esophagitis.

NASPGHAN Clinical Practice Guidelines, 2001
Eosinophilic Esophagitis

Dx requires EGD/bx
- Typical allergy tests not effective for dx
- Infiltrates can be in mid or distal esophagus
- Inflammation extends into submucosa
- Often normal pH probe study

Linear furrowing, white specks, fragile mucosa, trachealized rings *(but mucosa can be grossly normal)*

>20 eos/HPF confirms dx
Eosinophilic Esophagitis

- **Increasing incidence**
 - Function of dx technology and increased index of suspicion

- **Etiology unclear**
 - Allergic disorder
 - Non-IgE mediated
 - Food allergy involved
 - Aeroallergens may play role
 - Immune dysregulation
 - Severe GERD?

CHILD
- Vomiting
- Epigastric pain

ADOLESCENT
- Dysphagia

ADULT
- Dysphagia
- Stricture

Treatment of EE

- **Most effective**
 - Elimination diet
 - Elemental formula
 - LT inhibitors (montelukast)

- **Less effective**
 - Acid suppression
 - May improve sx but no effect on histology
 - Corticosteroids
 - sx and histologic relapses

- **Not effective**
 - Cromolyn sodium
 - Surgical GERD therapy
Barrett’s Esophagus

Major risk factors = DURATION + SEVERITY of GERD
Barrett’s

• Prevalence
 – Adults w/GERD: 15%
 – Children: 0.02-0.38%
 – 400 neurol. nl pts age 18m-25 y with GERD
 • Erosive esophagitis: 34%
 • Barrett’s: 0

• Management
 – Surveillance EGD q 1-5 y
 – Aggressive acid blockade
 – Fundoplication
 – Endoscopic mucosal resection + photodynamic therapy
 – COX-2 inhibitors?

Are there any published pediatric guidelines?
Paradigm 2005
GERD is a lifelong disorder, but its severity is not necessarily progressive

Proportion of adults who had childhood GERD symptoms:

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Adult refluxers (n = 225)</th>
<th>Adult nonrefluxers (n = 154)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spit up as infant</td>
<td>23 (8.8%)</td>
<td>6 (3.8%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Abdominal pain (epigastric pain)</td>
<td>48 (21.3%)</td>
<td>17 (11.0%)</td>
<td>0.009</td>
</tr>
<tr>
<td>Heartburn/ chest pain</td>
<td>67 (29.7%)</td>
<td>14 (9.0%)</td>
<td>0.000001</td>
</tr>
<tr>
<td>Dysphagia</td>
<td>52 (23.1%)</td>
<td>20 (12.9%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Underweight</td>
<td>47 (20.1%)</td>
<td>18 (11.6%)</td>
<td>0.02</td>
</tr>
<tr>
<td>Asthma</td>
<td>50 (22.2%)</td>
<td>9 (5.8%)</td>
<td>0.00002</td>
</tr>
</tbody>
</table>

P < 0.05 was considered statistically significant.
Adapted from Waring et al., 2002 (20).
Medical Therapy
PPI

- Similar healing of erosive and nonerosive esophagitis in children and adults
- **Key is using enough drug and using it right**
 - Children 1-10 y/o need higher per kg dosing
 - Increased metabolism of PPI thru cyt 2A19, 3A4
 - Omeprazole: 0.7-3.3 mg/kg/d (15-80 mg/d)
 - Lansoprazole: 1-1.5 mg/kg/d
 - Administer q AM just before 1st meal of day
 - Dose BID (or PM H2-blocker) in severe cases
 - Switch between PPIs if necessary
 - Safety
 - Omeprazole has been studied up to 2 years duration in children (11 y in adults)
 - Lansoprazole only up to 6 months duration
 - Benign fundic gland polyps unrelated to duration of therapy or dosing

Medical Therapy

Prokinetics

Metoclopramide
- Not efficacious
 - 12 studies in children since 1985
 - 7/9 controlled studies: NO significant improvement in GER sx
 - Increasing dose above 0.1 mg/kg/d: no improved response
- Adverse effects
 - Extrapyramidal sx can occur even at lower doses
 - Incidence of EPS higher in children
 - Tardive dyskinesia can be prolonged

Erythromycin
- Improves feeding tolerance in infants
 - 8/9 placebo-controlled studies
 - Dosing: 1.5-12.5 mg/kg q 6 h
 - Limited evidence in older children with GERD or gastroparesis
 - Need better outcome measures
- Risks
 - Pyloric stenosis
 - In preterms or neonates
 - QT prolongation
 - IV form in infants
 - Bacterial resistance

Antireflux Surgery

- Historical mainstay of Rx of severe GERD
 - Remains widely used
 - Increasing rate of use in 12-24 month age group
 - 14% of pediatric pts w/suspected GERD had fundoplication w/o diagnostic evaluation

- Not curative or even long-term solution
 - High rates of failure
 - Recurrence of GERD sx
 - Morbidity
 - Gas bloat syndrome
 - Esophageal dysmotility and pseudo-obstruction
 - Occasional mortality

Antireflux Surgery

- High-risk GERD pts most likely to have problems
 - Neurologic impairment (“static encephalopathy”)
 - Double complication rate, 3X morbidity, 4X re-operation rate
 - Within mean 3.5 y, 71% recurrence of sx, 25% operative failure
 - Esophageal surgery (repaired esoph. atresia)
 - Chronic lung dz (BPD, CF, asthma)

- Beware the flawed study (Fonkalsrud EW et al. Pediatrics 1998)
 - Reported “good” to “excellent” results in 85% of NI and 94% of NN children
 - No hypothesis, objective endpoints or outcome measures
 - Subjective outcomes not defined and “poor” not offered

- Best candidates for fundoplication
 - Neurologically normal
 - Well-established GERD by endoscopy
 - Prior response to PPI therapy

GER and Asthma

GER is associated with asthma and other airway problems.

Acid suppression helps control asthma flares.

- Asthma promotes GER by altering intrathoracic and intra-abdominal pressures
- GER promotes asthma
 - Reflux theory: refluxate directly stimulates airway bronchospasm and inflammation
 - Reflex theory: refluxate stimulates vagal reflex and bronchospasm thru shared innervation

Asthma and GER

Who to work up for GER

- Frequent exacerbations
 - Despite good compliance
- Nocturnal sx > once/wk
- GER sx precede resp. sx
- Lack of response to corticosteroids
 - > 2 bursts/yr prednisone
- Asthma beginning after 3 y/o
- Recurrent pneumonia

Recommended approach

3-month therapeutic trial of PPI in higher than std doses (even BID)

The Dreaded Helicobacter

- Infects \geq 50% humans
 - Most are asymptomatic
 - Almost always acquired in childhood
 - Risk factors
 - Infected family member
 - Crowded living conditions
 - Lower socioeconomic status
 - Daycare
 - Immigrant/intl. adoptee
 - Transmission
 - Fecal-oral
 - Oral-oral
 - Within families

Why care about H. pylori infection?
- Duodenal ulcer disease
- Atrophic corpus gastritis: precursor to gastric adenocarcinoma or MALT lymphoma
- Iron deficiency anemia
- Growth retardation (possible association)

Diagnosis

Indications for testing
- DU or GU
 - Endoscopically dx’d
 - Radiographically definitive
- MALT lymphoma
- Follow-up of documented H. pylori disease

Not recommended
- Asymptomatic children
- Recurrent abdominal pain without documented PUD
- Family hx of gastric cancer or recurrent PUD

Gold BD et al. (2000) NASPGHAN Guidelines
JPGN 31: 490-97.
Treatment

• Indications
 – DU/GU with Hp on bx
 – Prior hx DU/GU with active Hp
 – Atrophic gastritis w/intestinal metaplasia + Hp
 – Judgement call:
 • Hp+ gastritis w/o PUD

• Not recommended
 – Asymptomatic child + family member w/Hp, PUD, or gastric cancer
 – Hp+ child with nonulcer dyspepsia or functional abdominal pain

Table. North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition Position Statement: Recommended Regimens for Helicobacter pylori Treatment

First-line regimens, each agent administered twice-daily for 10 to 14 days
- Proton pump inhibitor (1-2 mg/kg/day) plus amoxicillin (50 mg/kg/day) plus clarithromycin (15 mg/kg/day)
- Proton pump inhibitor (1-2 mg/kg/day) plus amoxicillin (50 mg/kg/day) plus metronidazole (20 mg/kg/day)
- Proton pump inhibitor (1-2 mg/kg/day) plus metronidazole (20 mg/kg/day) plus clarithromycin (15 mg/kg/day)

Functional GI Problems in the Adolescent